Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Applied Sciences ; 12(19):9845, 2022.
Article in English | MDPI | ID: covidwho-2065682

ABSTRACT

In today's technological and stressful world, when everyone is busy in their daily routines and places blind faith in pharmaceutical advancements to protect their health, the sudden, horrifying effects of the COVID-19 pandemic have resulted in serious emotional and psychological impacts in the general population. In spite of advanced vaccination campaigns, fear and hesitation have become a part of human life since there are a number of people who do not want to take these immunity boosting vaccinations. Such people may become carriers of infectious viruses, leading to a more rapid rate of spread;therefore, this class of spreaders needs to be screened at the earliest opportunity. In this context, there is a need for advanced health monitoring systems which can assist the pharmaceutical industry to monitor and record the health status of people. To address this need and reduce the uncertainty of the situation, this study has designed and tested an Internet of Things (IoT) and Fog computing-based multi-node architecture was for real-time initial screening and recording of such subjects. The proposed system was able to record current body temperature and location coordinates along with the facial images. Further, the proposed system was able to transmit data to a cloud database using internet-connected services. An implementation and reviews-based working environment analysis was conducted to determine the efficacy of the proposed system. It was observed from the statistical analysis that the proposed IoT Fog-enabled ecosystem could be utilized efficiently.

2.
Sensors (Basel) ; 21(19)2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1463795

ABSTRACT

The role of 5G-IoT has become indispensable in smart applications and it plays a crucial part in e-health applications. E-health applications require intelligent schemes and architectures to overcome the security threats against the sensitive data of patients. The information in e-healthcare applications is stored in the cloud which is vulnerable to security attacks. However, with deep learning techniques, these attacks can be detected, which needs hybrid models. In this article, a new deep learning model (CNN-DMA) is proposed to detect malware attacks based on a classifier-Convolution Neural Network (CNN). The model uses three layers, i.e., Dense, Dropout, and Flatten. Batch sizes of 64, 20 epoch, and 25 classes are used to train the network. An input image of 32 × 32 × 1 is used for the initial convolutional layer. Results are retrieved on the Malimg dataset where 25 families of malware are fed as input and our model has detected is Alueron.gen!J malware. The proposed model CNN-DMA is 99% accurate and it is validated with state-of-the-art techniques.


Subject(s)
Deep Learning , Delivery of Health Care , Humans , Neural Networks, Computer
3.
J Healthc Eng ; 2021: 5513679, 2021.
Article in English | MEDLINE | ID: covidwho-1286755

ABSTRACT

The world is experiencing an unprecedented crisis due to the coronavirus disease (COVID-19) outbreak that has affected nearly 216 countries and territories across the globe. Since the pandemic outbreak, there is a growing interest in computational model-based diagnostic technologies to support the screening and diagnosis of COVID-19 cases using medical imaging such as chest X-ray (CXR) scans. It is discovered in initial studies that patients infected with COVID-19 show abnormalities in their CXR images that represent specific radiological patterns. Still, detection of these patterns is challenging and time-consuming even for skilled radiologists. In this study, we propose a novel convolutional neural network- (CNN-) based deep learning fusion framework using the transfer learning concept where parameters (weights) from different models are combined into a single model to extract features from images which are then fed to a custom classifier for prediction. We use gradient-weighted class activation mapping to visualize the infected areas of CXR images. Furthermore, we provide feature representation through visualization to gain a deeper understanding of the class separability of the studied models with respect to COVID-19 detection. Cross-validation studies are used to assess the performance of the proposed models using open-access datasets containing healthy and both COVID-19 and other pneumonia infected CXR images. Evaluation results show that the best performing fusion model can attain a classification accuracy of 95.49% with a high level of sensitivity and specificity.


Subject(s)
COVID-19/diagnostic imaging , Deep Learning , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/methods , Humans , Lung/diagnostic imaging , SARS-CoV-2 , Sensitivity and Specificity
4.
Mathematical Problems in Engineering ; : 1-8, 2021.
Article in English | Academic Search Complete | ID: covidwho-1238615

ABSTRACT

The COVID-19 pandemic has wreaked havoc in the daily life of human beings and devastated many economies worldwide, claiming millions of lives so far. Studies on COVID-19 have shown that older adults and people with a history of various medical issues, specifically prior cases of pneumonia, are at a higher risk of developing severe complications from COVID-19. As pneumonia is a common type of infection that spreads in the lungs, doctors usually perform chest X-ray to identify the infected regions of the lungs. In this study, machine learning tools such as LabelBinarizer are used to perform one-hot encoding on the labeled chest X-ray images and transform them into categorical form using Python's to_categorical tool. Subsequently, various deep learning features such as convolutional neural network (CNN), VGG16, AveragePooling2D, dropout, flatten, dense, and input are used to build a detection model. Adam is used as an optimizer, which can be further applied to predict pneumonia in COVID-19 patients. The model predicted pneumonia with an average accuracy of 91.69%, sensitivity of 95.92%, and specificity of 100%. The model also efficiently reduces training loss and increases accuracy. [ABSTRACT FROM AUTHOR] Copyright of Mathematical Problems in Engineering is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

SELECTION OF CITATIONS
SEARCH DETAIL